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Abstract: 

This paper discusses one graph spectral-based invariant, graph energy. First,  we define the 

adjacency, Laplacian, and signless Laplacian matrices associated with the graph. Then, the 

characteristic equations of these matrices are described. The graph spectra are obtained by 

solving these adjacency, Laplacian, and signless Laplacian characteristic equations. The roots 

of these characteristic equations are called eigenvalues of the respective matrices of the 

graph. The set of eigenvalues of the graph with their multiplicities is known as the spectrum. 

Subsequently,  adjacency, Laplacian, and signless Laplacian spectra are obtained. The graph's 

energy is the sum of the absolute values of the eigenvalues of the matrix of the respective 

graphs. Consequently,  energy, Laplacian energy, and signless Laplacian energy are obtained 

and established in their relation in this paper. 

Keywords : spectrum, energy, Laplacian energy,  signless Laplacian energy 

1. Introduction 

Let 𝐺 be a finite, simple and undirected graph with a set of vertex 𝑉(𝐺) and a set of 

edges 𝐸(𝐺).  Let |𝑉(𝐺)| = 𝑛 and |𝐸(𝐺)| = 𝑚. Let 𝐴 = [𝑎𝑖𝑗] be an adjacency matrix of a 

graph 𝐺 with vertices 𝑣1, 𝑣2, 𝑣3 ⋯ 𝑣𝑛 such that 𝐴(𝐺) = [𝑎𝑖𝑗] = 1 if 𝑣𝑖 is adjacent to 𝑣𝑗  and 

equal to 0 otherwise. The characteristic polynomial of the adjacency matrix 𝐴(𝐺) is det(𝜆𝐼 −

𝐴(𝐺)), where I is the unit matrix of order 𝑛 and is indicated by 𝑃(𝐺; 𝜆). The eigenvalues of 

the graph are defined as the eigenvalues of adjacency matrix A(G), so they are just the root of 

the equation 𝑃(𝐺; 𝜆) = 0. Since A (G) is real symmetric, all roots are real, i.e., its 

eigenvalues are real. Denote them 𝜆1, 𝜆2, … . . 𝜆𝑛. The set of eigenvalues of the graph with 

their multiplicities is known as spectrum [2] of the graph and it is denoted by 

Spec(𝐺) = (
𝜆1 𝜆2 ⋯ 𝜆𝑛

𝑚1 𝑚2 ⋯ 𝑚𝑛
) 

Since 𝐴(𝐺) is symmetric therefore eigenvalues are in non-increasing order 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥

𝜆𝑛.  

Some well-known results on eigenvalues of the adjacency matrix of the graph 𝐺 are the 

following 

∑  

𝑛

𝑖=1

 𝜆𝑖 = 0 … … … (1)

∑  

𝑛

𝑖=1

 𝜆𝑖
2 = 2𝑚 … … … (2)
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Let 𝐷(𝐺) = diag(𝑑1, 𝑑2, ⋯ , 𝑑𝑛) be the diagonal matrix of graph  , where 𝑑𝑖 = deg(𝑣𝑖), for 

all 𝑖 = 1,2,3, ⋯ , 𝑛. Then the Laplacian matrix and the signless Laplacian matrix of 𝐺 can be 

presented as 𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺) and 𝐿+(𝐺) = 𝐷(𝐺) + 𝐴(𝐺), respectively. Both matrices 

are real symmetric positive semi-definite matrices. Therefore, their eigenvalues are 

nonnegative real numbers. Let 𝜇1, 𝜇2, ⋯ 𝜇𝑛 be the eigenvalues of 𝐿(𝐺). It is known that 𝜇𝑛 =

0 and 𝜇𝑛−1 > 0 if and only if  G is connected. Then 

∑  

𝑛

𝑖=1

 𝜇𝑖 = 2𝑚 … … (3)  

Moreover, we have 

∑  

𝑛

𝑖=1

 𝜇𝑖
2 = ∑  

𝑛

𝑖=1

 𝑑𝑖(𝑑𝑖 + 1) = 𝑀1(𝐺) + 2𝑚 … … … (4)  

Where 𝑀1 is called first Zagreb index of graph 𝐺. 

Similarly, if 𝜇1
+, 𝜇2

+, ⋯ 𝜇𝑛
+be the eigenvalues of 𝐿+(𝐺) then it can be easily shown that 

∑  

𝑛

𝑖=1

 𝜇𝑖
+ = 2𝑚 … … … (5)  

One of the chemical applications of spectral graph theory is based on the close 

correspondence between the graph eigenvalues and molecular orbital energy level of 

electrons in conjugated hydrocarbons. The total -electron energy was calculated by Erich 

Huckel in 1930. In light of this relation, Ivan Gutman, in 1978, proposed [4] a mathematical 

definition of the energy of graphs as shown in equation (6) that the energy of the graph is the 

sum of the absolute values of the eigenvalues of a graph G and is denoted by, that is 

𝐸(𝐺) = ∑  

𝑛

𝑖=1

  |𝜆𝑖| … … (6)  

Equation (6) is the graph spectrum-based quantity. Since 𝜇1, 𝜇2, ⋯ 𝜇𝑛 be the eigenvalues of 

𝐿(𝐺) then Laplacian energy of 𝐿(𝐺) is denoted by 𝐿𝐸(𝐺) and defined by Gutman [6] as 

𝐿𝐸(𝐺) = ∑  

𝑛

𝑖=1

  |𝜇𝑖 −
2𝑚

𝑛
| … … (7)  

Similarly if 𝜇1
+, 𝜇2

+, ⋯ 𝜇𝑛
+be the eigenvalues of 𝐿+(𝐺) then signless Laplacian energy[1] is 

defined as 

𝐿𝐸+(𝐺) = ∑  

𝑛

𝑖=1

  |𝜇𝑖
+ −

2𝑚

𝑛
| … … (8)  
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The application of Laplacian energy and signless Laplacian energy is not only on organic 

chemistry [5] but also on image processing and information theory [10]. 

2. Preliminaries 

Some of the basic properties of energy and Laplacian energy and signless Laplacian energy 

are discussed here 

Lemma 2.1 Let 𝐴 and 𝐵 be two real symmetric matrices of order 𝑛. Then for 1 ≤ 𝑘 ≤ 𝑛, 

∑  

𝑘

𝑖=1

𝜆(𝐴 + 𝐵) ≤ ∑  

𝑘

𝑖=1

𝜆𝑖(𝐴) + ∑  

𝑘

𝑖=1

𝜆𝑖(𝐵) 

Proposition 2.1 The spectrum of adjacency matrix 𝐴(𝐺),the Laplacian matrix 𝐿(𝐺) and 

signless Laplacian matrix 𝐿+(𝐺) consist entirely of real number 

Theorem 2.2 Let 𝐺 be regular graph where all vertices have degree d. If 𝜆1, 𝜆2, … . 𝜆𝑛 

eigenvalues of adjacency matrix of 𝐺 then eigenvalues of Laplacian matrix are 𝑑 − 𝜆1, 𝑑 −

𝜆2, … . . 𝑑 − 𝜆𝑛. 

Lemma 2.2 Let 𝜇1, 𝜇2, ⋯ 𝜇𝑛 be the eigenvalues of 𝐿(𝐺) of a graph 𝐺, then 

∑  

𝑛

𝑖=1

𝜇𝑖
2 = ∑  

𝑛

𝑖=1

𝑑𝑖(𝑑𝑖 + 1) = 𝑀1(𝐺) + 2𝑚 

where 𝑀1 is called first Zagreb index of graph 𝐺. 

Corollary 2.1 If 𝜇1, 𝜇2, ⋯ , 𝜇𝑛 be the Laplacian eigenvalues of a graph 𝐺 with 𝑛 vertices and 

𝑚 edges, then 

∑  

𝑛

𝑖=1

(𝜇𝑖 −
2𝑚

𝑛
)

2

= 2𝑚 + 𝑀1(𝐺) −
4𝑚2

𝑛
 

Proof:  We have 

∑  

𝑛

𝑖=1

  (𝜇𝑖 −
2𝑚

𝑛
)

2

 = ∑  

𝑛

𝑖=1

 𝜇𝑖
2 −

4𝑚

𝑛
𝜇𝑖 + 𝑛 (

2𝑚

𝑛
)

2

 = 𝑀1(𝐺) + 2𝑚 −
8𝑚2

𝑛
+

4𝑚2

𝑛

 = 𝑀1(𝐺) + 2𝑚 −
4𝑚2

𝑛

 

Lemma 2.3 Let 𝐺 be a graph and let 𝜎(1 ≤ 𝜎 ≤ 𝑛) be the largest positive integer such that 

𝐿𝐸(𝐺) = 2𝑆𝜎(𝐺) −
4𝑚𝜎

𝑛
= max

1≦𝑖<𝑛−1
  {2𝑆𝑖(𝐺) −

4𝑚𝑖

𝑛
} 
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where 

𝑆𝜎(𝐺) = ∑  

𝜎

𝑖=1

𝜇𝑖 

3. Hyperenergetic, non-hyperenergetic, borderenergetic and equienergetic graphs 

In 1978, Ivan Gutman conjectured that the complete graph 𝐾𝑛 has maximum energy. i.e. 

𝐸(𝐺) ≤ 𝐸(𝐾𝑛) ≤ 2(𝑛 − 1) 

However, that was not true. There are graphs whose energy is larger than the energy of 𝐾𝑛. 

This gives the concept of hyperenergetic graphs. If 𝐸(𝐺) > 2(𝑛 − 1), then the graph is called 

hyperenergetic graph, and if 𝐸(𝐺) < 2(𝑛 − 1), the graph is called Non-hyper-energetic 

graph. A non-complete graph with energy equal to 2𝑛(𝑛 − 1) is called a borderenergetic 

graph. Two graphs 𝐺1 and 𝐺2 are said to be equienergetic if 𝐸(𝐺1) = 𝐸(𝐺2). The co-spectral 

graph is obviously equienergetic. 

3.1 Relation between 𝐸(𝐺) and 𝐿𝐸(𝐺) 

For some classes of non-regular graphs say,  𝐶6 ∪ 𝐾2, the relation 𝐸(𝐺) = 𝐿𝐸(𝐺) holds. For 

complete bipartite graph 𝐾𝑝,𝑞 , 𝐾𝑎 ∪ 𝐾𝑏 graphs, the graphs 𝐾𝑏𝑝(𝑘) obtained by deleting the 

edges from the complete graph 𝐾𝑛, and 𝐾𝑐𝑛(𝑘) obtained by deleting the 
𝑘(𝑘−1)

2
 edges of a 

complete graph 𝐾𝑘 from complete graph 𝐾𝑛, the extremal Hakimi graph (𝐻𝑛) and Coalscence 

of 𝐾𝑛 ∙ 𝐾𝑛, the relation 𝐿𝐸(𝐺) ≥ 𝐸(𝐺) holds. Therefore, Gutman et. al [5] formulate the 

given conjecture. Gutman proved a conjecture [5] that 𝐿𝐸(𝐺) ≥ 𝐸(𝐺) for all graphs. 

However, Stevanovic et al.[14] disproved the inequality by giving a single counter-example 

for an infinite family of graphs G, namely 𝐺 ≅ 𝐾𝐾𝑛 for which 𝑛 ≥ 8, the reverse inequality 

holds. Liu and Liu [7] also give the counterexample of the above conjecture. Later, it is 

proven [11,13] that 𝐿𝐸(𝐺) ≥ 𝐸(𝐺) holds for all bipartite graphs by using the Ky-Fan 

theorem. 

For any square matrix M of order n . if 𝑠𝑖(𝑀), 𝑖 = 1,2, ⋯ , 𝑛 be its singular values and 

𝑥𝑖(𝑀), 𝑖 = 1,2 ⋯ , 𝑛 be its eigenvalues. Then 𝑠𝑖(𝑚) = |𝑥𝑖(𝑚)| for 𝑖 = 1,2, ⋯ , 𝑛 Nikiforov[9] 

obtained that the energy of graph G is equal to the sum of the singular 

values of its adjacency matrix 𝐴(𝐺). According to the above definition if 𝜇1, 𝜇2, ⋯ 𝜇𝑛 be the 

eigenvalues of 𝐿(𝐺).Then 𝜇1 −
2𝑚

𝑛
, 𝜇2 −

2𝑚

𝑛
, ⋯ 𝜇𝑛 −

2𝑚

𝑛
  are the eigenvalues of 

𝐿(𝐺) −
2𝑚

𝑛
𝐼𝑛 … … … (9)  

Similarly, if 𝜇1
+, 𝜇2

+, ⋯ 𝜇𝑛
+  be the eigenvalues of  𝐿+(𝐺). Then 𝜇1

+ −
2𝑚

𝑛
, 𝜇2

+ −
2𝑚

𝑛
, ⋯ 𝜇𝑛

+ − 
2𝑚

𝑛
  

are the eigenvalues of 
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𝐿+(𝐺) −
2𝑚

𝑛
𝐼𝑛 … … (10)  

where 𝐼𝑛 be the unit matrix of order n . 

Theorem 3.1 (Ky-Fan Theorem) Let 𝐴, 𝐵 and 𝐶 be square matrices of order 𝑛, such that 𝐴 +

𝐵 = 𝐶., Then 

∑  

𝑛

𝑖=1

𝑠𝑖(𝐴) + ∑  

𝑛

𝑖=1

𝑠𝑖(𝐵) ≥ ∑  

𝑛

𝑖=1

𝑠𝑖(𝐶) 

Equality holds iff there exists an orthogonal matrix 𝑃, such that 𝑃𝐴 and 𝑃𝐵 are both positive 

semi-definite. 

Theorem 3.2 For a graph 𝐺 with vertex degrees 𝑑1, 𝑑2, ⋯ , 𝑑𝑛 and average vertex degree 
2𝑚

𝑛
, 

𝐿𝐸(𝐺) ≤ 𝐸(𝐺) + ∑  

𝑛

𝑖=1

|𝑑𝑖 −
2𝑚

𝑛
| 

Proof: We rewrite equation (7) in below matrix form, 

𝐿 −
2𝑚

𝑛
𝐼𝑛 = (𝐷 −

2𝑚

𝑛
) 𝐼𝑛 − 𝐴

 = (−𝐴) + (𝐷 −
2𝑚

𝑛
) 𝐼𝑛

 

Now applying Ky-Fan theorem 3.1 in above by keeping mind equation (9) we get, 

gives the results. 

∑  

𝑛

𝑖=1

  𝑠𝑖 (𝐿 −
2𝑚

𝑛
𝐼𝑛) ≤ − ∑  

𝑛

𝑖=1

  𝑠𝑖(𝐴) + ∑  

𝑛

𝑖=1

  𝑠𝑖 (𝐷 −
2𝑚

𝑛
𝐼𝑛)

∑  

𝑛

𝑖=1

  |𝛾𝑖| ≤ ∑  

𝑛

𝑖=1

  |𝜆𝑖| + ∑  

𝑛

𝑖=1

  |𝑑𝑖 −
2𝑚

𝑛
|

 

W.So et.al [13] proved the conjecture is true for all bipartite graphs. 

Theorem 3.3 If 𝐺 is bipartite graph then also 𝐿𝐸(𝐺) ≥ 𝐸(𝐺) 

Proof: Subtracting equation (3) from (5) 

𝐿+(𝐺) − 𝐿(𝐺) = 2𝐴(𝐺) 

Rewritten above as 

(𝐿+ −
2𝑚

𝑛
𝐼𝑛) − (𝐿 −

2𝑚

𝑛
𝐼𝑛) = 2𝐴 … … (11)  
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As per theorem (9) 𝐿+(𝐺) and 𝐿(𝐺) has same spectra so 

∑  

𝑛

𝑖=1

𝑠𝑖 (𝐿+ −
2𝑚

𝑛
𝐼𝑛) = ∑  

𝑛

𝑖=1

𝑠𝑖 (𝐿 −
2𝑚

𝑛
𝐼𝑛) = ∑  

𝑛

𝑖=1

𝑠𝑖 [− (𝐿 −
2𝑚

𝑛
𝐼𝑛)] = 𝐿𝐸(𝐺) 

Applying Ky-Fan theorem in the equation , we have 

𝐿𝐸(𝐺) ≥ 𝐸(𝐺) 

Using Ky Fan, So et al.[12] are also given the relation between energy and Laplacian energy 

in bipartite graphs as 

LE(𝐺) ≥ max [𝐸(𝐺), ∑  

𝑛

𝑖=1

  |𝑑𝑖 −
2𝑚

𝑛
|] … … . (12)  

Du. et al [3] proved that the conjecture given by Gutman is true for almost all graphs. 

Until then, characterizing all graphs for which inequality holds or not 𝐿𝐸(𝐺) ≥ 𝐸(𝐺) or 

𝐿𝐸(𝐺) ≤ 𝐸(𝐺) is a challenging task. Still, it is an open problem. 

4. Relation between  𝐸(𝐺) and 𝐿𝐸+(𝐺) 

P. Wang et al.[15] obtains a relation between energy and signless Laplacian energy for 

regular graph G 

𝐸(𝐺) = 𝐿𝐸+(𝐺) ≤
2𝑚

𝑛
+ √(𝑛 − 1) [2𝑚 − (

2𝑚

𝑛
)

2

] … … (13)  

with equality holds if and only if 𝐺 ≡ 𝐾𝑛,
𝑛

2
𝐾2 or 𝐺 ≡ 𝑆(𝑛, 𝑟) 

5. Relation among  𝐸(𝐺), 𝐿𝐸(𝐺) and 𝐿𝐸+(𝐺) 

If a graph 𝐺 is bipartite, then signless Laplacian energy 𝐿+𝐸(𝐺) = 𝐸(𝐺).Also if the graph 𝐺 

is regular then  𝐿+𝐸(𝐺) = 𝐿𝐸(𝐺) = 𝐸(𝐺). Therefore, we must find the relation between 

energy and Laplacian energy; if a graph 𝐺 is bipartite, then signless Laplacian 

energy𝐿+𝐸(𝐺) = 𝐸(𝐺). Also, if the graph 𝐺 is regular then 𝐿+𝐸(𝐺) = 𝐿𝐸(𝐺) = 𝐸(𝐺). 

Therefore, we must find the relation between energy, Laplacian energy, and signless 

Laplacian energy for non-bipartite nonregular graphs. However, it is an open problem. The 

relation between them has yet to come for non-bipartite, non-regular graphs. 

 

The relation among 𝐸(𝐺), 𝐿𝐸(𝐺) and 𝐿𝐸+(𝐺) is presented by Abreu et al.[1] as givev 

below: 

 

If G is an ( 𝑛, 𝑚 ) graph. Then 
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|𝐿𝐸+(𝐺) − 𝐿𝐸(𝐺)| ≤ 2𝐸(𝐺) … … (14)  

The equality holds G is null graph 

Also, they obtain Also, they obtain 

𝐿𝐸+(𝐺) + 𝐿𝐸(𝐺) ≥ max [2𝐸(𝐺), 2 ∑  

𝑛

𝑖=1

  |𝑑𝑖 −
2𝑚

𝑛
|] … … (15)  

Moreover, Das and Mojjalal [8] proved the given theorem in their thesis 

𝐿𝐸+(𝐺) + 𝐿𝐸(𝐺) ≥ 4𝐸(𝐺) −
4𝑚𝑟

𝑛
… … (16)  

with equality holding iff 𝐺 ≡ 𝑛𝐾1 or 𝐺 ≡ 𝐾2 ∪ (𝑛 − 2)𝐾1 or 𝐺 ≡ 𝐾𝑛/2,𝑛/2. Two equ.(15) and 

equ.(16) are not comparable. Sometimes equ. (16) is better than equ. (15) but not always. 
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